Audrey escreveu um livro sobre os antecedentes das “máquinas de ensinar” que existem atualmente: “Teaching Machines”, lançado em 2021 pela MIT Press. Ela escolheu falar sobre o passado para nos fazer refletir sobre o futuro.
Como Watters comentou, para compreender as tecnologias e a nossa relação com elas é preciso olhar para a história, para o passado, não apenas para o futuro. Ao motivar-se para escrever esse livro, ela estava interessada em saber como chegamos até aqui. Sentia-se incomodada com a falsa sensação de que “de repente a tecnologia educacional surgiu”, como se fosse “do nada”. Não podemos desconectar o passado do que o futuro é e de como o futuro será.
“I see behaviorism everywhere”, Watters disse se referindo ao filme “O Sexto Sentido”. B. F. Skinner é muito atual quando se trata de como concebemos a aprendizagem ainda hoje. A ideia de que se deve recompensar os estudantes imediatamente ela aprendizagem “bem sucedida” continua atualizada, e tem tudo a ver com o behaviorismo. Ainda somos fortemente orientados a esse processo de recompensa. Basta olhar ara o nosso comportamento online, evidente na dependência tecnológica que temos desenvolvido. Quando rolamos a tela do celular ávidos pela próxima informação ou aguardamos ansiosamente por novas mensagens, o que queremos, de certo modo, é ser recompensados.
“Não vejo a tecnologia como os vetores das mudanças, mas as pessoas”, disse Audrey. Concordo super com ela.
Este post é um complemento à aula que dei no XI Curso de Verão do INCOg/PUC-Rio sobre a Tese da Mente Estendida. Coloquei aqui os links, imagens, vídeos e inspirações que usei na apresentação, para que ficassem disponíveis para quem deseja saber mais.
A aula está disponível no vídeo a seguir.
O que vemos quando olhamos para uma obra de arte, um quadro, uma pintura, é o resultado de muitas tentativas e erros, trabalhos e retrabalhos. Esboços. Rascunhos. E, mesmo depois dos rascunhos, a obra de arte em si é constituída a partir de muitas camadas.
A tese da mente estendida desenvolvida por Andy Clark nos convida a ter essa perspectiva da mente e da cognição humana, como se estivéssemos sempre fazendo um processo de tentativa e erro para entender o mundo e as coisas que acontecem com a gente e em torno de nós. A abordagem nos leva a entender a formação da mente humana em camadas, que vamos adicionando na medida em que experimentamos as mais diversas atividades de estar no mundo e de conhecer o meio.
Abaixo há uma série de referências e vídeos para quem deseja saber mais sobre a tese e descobrir como a atividade mental humana é mais ativa, fluida e imaginativa do que talvez pudéssemos conceber:
No livro DESEDUCANDO A EDUCAÇÃO: MENTES, MATERIALIDADES E METÁFORAS, lançado por um grupo de professores do Departamento de Educação da PUC-Rio (prof. Ralph Bannell, Mylene Mizrahi e Giselle Ferreira) em 2021, há um capítulo que se chama Para além do cérebro nu. Trata-se da tradução do capítulo 8 do livro Mindware, de Andy Clark. Este capítulo é fundamental para compreender mais sobre as ideias que apresentei no Curso de Verão do INCOg (em breve posto o vídeo da apresentação aqui);
O livro pode ser baixado gratuitamente no site da Editora PUC-Rio http://www.editora.puc-rio.br/
2. A artista que aparece pintando, e cujas imagens usei para ilustrar a questão das camadas na pintura, é canadense e se chama Lori Mirabelli. Assista a este vídeo completo dela e ouça as explicações sobre as camadas; mesmo para quem nao é artista, é o maior barato acompanhá-la mostrando esse processo interessantíssimo:
3. O livro cuja capa aparece no quarto slide é o “Oxford Handbook of 4E Cognition”, editado por Albert Newen, Leon De Bruin e Shaun Gallagher; saiba mais sobre a publicaçãoaqui.
4. O livro em que Andy Clark aprofunda a questão das previsões cerebrais e como elas se acomodam com sua teoria da mente estendida se chama Surfing Uncertainty – Prediction, Action and the Embodied Mind e você pode saber mais sobre ele aqui.
5. Abaixo está o vídeo completo sobre as previsões cerebrais, cujos trechos apresentei na minha aula. O vídeo é ótimo, o único inconveniente é que não tem legendas em português (e nem mesmo em inglês). Mas vale a pena assistir – e você pode usar o recurso de abrir a transcrição do vídeo e depois traduzi-la num tradutor online, se precisar. A aula do vídeo é dada por Anil Kumar Seth, professor britânico de Neurociência Cognitiva e Computacional na Universidade de Sussex.
6. O desenho de Otto e Inga, reproduzido abaixo, foi feito por Helen de Cruz, filósofa e artista, e faz parte de uma série de ilustrações que ela fez para tentar materializar visualmente experiências filosóficas. Esses desenhos incríveis podem ser vistos neste link aqui.
7. A imagem abaixo, que achei poderosa para ilustrar a ideia de andaimes introduzida por Clark para abordar as extensões da mente, está numa matéria da Scientific America apropriadamente intitulada How Room Designs Affect Your Work and Mood.
8. A imagem do post, lá em cima, e que abre a apresentação, eu achei aqui
9. A apresentação em Power Point está disponível aqui
10. Referências Bibliográficas da apresentação/aula:
CLARK, A.; CHALMERS, D. The extended
mind. Analysis, 58
(1), p. 7-19, 1998.
CLARK, A. Para além do cérebro nu. In Bannell, R.
I., Mizrahi, M.,
Martins dos
Santos Ferreira, G. (Orgs.) (Des)educando
a
educação: Mentes, Materialidades e Metáforas. Tradução de Camila De Paoli
Leporace. Rio de Janeiro: PUC-Rio, 2021.
CLARK, A. Being there: putting brain, body,
and world together again.
Cambridge, MA: MIT Press, 1998.
_________. Natural-Born Cyborgs. Minds,
Technologies and the Future of Human Intelligence, New York: Oxford University Press,
2003.
_________. Supersizing the mind: embodiment,
action, and cognitive extension. Oxford: Oxford University Press, 2011.
_________. A. Mindware. Cambridge: MIT Press, 2014.
DELLERMANN, D., EBELl, P.,
SÖLLNER, M., & LEIMEISTER, J. M. (2019). Hybrid Intelligence. Business
andInformation
Systems Engineering, 61(5),
637–643. https://doi.org/10.1007/s12599-019-00595-2
GALLAHER, S. Philosophical Antecedents of
Situated Cognition. In: ROBBINS, Philip, e AYDEDE, Murat. The
Cambridge Handbook of Situated Cognition. Cambridge University Press, 2009.
NEWEN, A,; DE BRUIN, L.; GALLAGHER, S. The
Oxford Handbook of 4Es Cognition. New York: Oxford University Press,
2018.
ROBBINS, P., e AYDEDE, M. The
Cambridge Handbook of Situated Cognition. Cambridge University Press, 2009).
RUPERT, R. Cognitive Systems and the Extended
Mind. New
York: Oxford University Press, 2009.
SOEKADAR, S., CHANDLER, J., IENCA, M.,
& BUBLITZ, C. (2021). On The Verge of the Hybrid Mind. Morals
& Machines, 1(1),
32–45. https://doi.org/10.5771/2747-5182-2021-1-32.
Hubert Dreyfus’ “What computers Can’t Do” will be 50 years old in 2022. Despite having been released half a century ago, it is still pertaining when it comes to the gap between human cognition and artificial intelligence. I like Dreyfus’ critique to artificial reason mostly because he was actually concerned with human intelligence, not so much machines’ intelligence. The book (which got a second edition, amplified, in 1992) is compelling for those interested in comprehending some of the most important challenges faced by AI – and that have not yet been overcome.
Inspired by phenomenologists like Heidegger and Merleau-Ponty, Dreyfus (who unfortunately died in 2017 at 87) advocated that human intelligence is far beyond computation and representation. He suggested that we are “skillful copers”, i.e., highly skilled embodied agents capable of dealing with the world’s uncertainties and unsteadiness in a remarkably fine-grained way, anchored in the body and in the emotions. Because it is coupled to the environment, this being-in-the-world is more direct and less dependent on mediators (representations).
I also encourage readers to watch some of Dreyfus’ great interviews, lectures and talks available online.
PT
Hubert Dreyfus’ “What computers Can’t Do” fará 50 anos em 2022. Apesar de ter sido lançado há meio século, ele ainda é pertinente quando se trata do gap entre a cognição humana e a inteligência artificial. Eu gosto da crítica de Dreyfus à razão artificial principalmente porque ele estava realmente preocupado com a inteligência humana, não tanto com a inteligência das máquinas. O livro (que teve uma segunda edição, ampliada, em 1992) é muito pertinente para aqueles interessados em compreender alguns dos desafios mais importantes enfrentados pela IA – e que ainda não foram superados.
Inspirado por fenomenólogos como Heidegger e Merleau-Ponty, Dreyfus (que infelizmente morreu em 2017 aos 87 anos) defendeu que a inteligência humana está muito além da computação e da representação. Ele sugeriu que somos “skillful copers”, isto é, agentes corporificados altamente habilidosos capazes de lidar com as incertezas e instabilidades do mundo de uma forma altamente refinada, ancorada no corpo e nas emoções. Por estar acoplado ao meio ambiente, este being-in-the-world é mais direto e menos dependente de mediadores (representações).
Eu também encorajo os leitores a assistir algumas das grandes entrevistas e palestras da Dreyfus disponíveis on-line.
Hubert Dreyfus on Embodiment (II-II)
Conversations with History: Hubert Dreyfus
Hubert Dreyfus Interview – AI, Heidegger, Meaning in the Modern World
Speakers: Catarina Dutilh Novaes, J. Adam Carter, Manuel Curado, Ron Chrisley, Steven Fuller, Vincent Müller, Paul Smart among others
We are living through a new phase in human development where much of everyday life – at least in the most technologically developed parts of the world – has come to depend upon our interaction with “smart” artefacts. Alongside this increasing adoption and ever-deepening reliance on intelligent machines, important changes have been taking place, often in the background, as to how we think of ourselves and how we conceptualize our relationship with technology. As we design, create and learn to live with a new order of artefacts which exhibit behavior that, were it to be carried out by human beings would be seen as intelligent, the ways in which we conceptualize intelligence, minds, reasoning and related notions such as self and agency are undergoing profound shifts. Indeed, it is possible to argue that the basic background assumptions informing, and the underlying conceptual scheme structuring our reasoning about minds has recently been transformed. This shift has changed the nature and quality of both our folk understanding of mind, our scientific psychology, and the philosophical problems that the interaction of these realms produce. These new conceptualizations – sometimes implicit, sometimes explicit – about the nature of mind and its relationships to the artefacts we build has given rise to a new constellation of basic philosophical problems about the very nature of mind. This constellation we call, The Mind-Technology Problem. The mind-technology problem should be understood as the successor to the mind-body problem, engaging with the mind in a digital era. Distinctive questions include: What properties of mind may be enabled, transformed or extended by technology? What properties of mind may be diminished, outsourced or curtailed? Is human agency being primarily constrained or enabled by our encounter with 21st Century technology and especially by our interaction with AI? How might the nature of human agency, memory, knowledge, responsibility, and consciousness be changed through this interaction? These can all be viewed as problems of where our minds stop, and our artefacts begin. Deciding the limits of mind seem to recast the nature of the other philosophical problems around it.
Programa
21 de Outubro, Quinta-feira
09:30 – 10:00 Registration 10:00 – 10:20 Robert Clowes – Intro: Why the Mind Technology Problem? Why Now? 10:20 – 11:30 Steven Fuller – Humans 2.0 and tMTP (Final Title TBC) 11:30 – 11:50 COFFEE BREAK 11:50 – 13:00 Catarina Dutilh Novaes [online] – Attention and Trust in Online Argumention. 13:00 – 14:30 ALMOÇO 14.30 – 15:40 Manuel Curado – The Mind-Technology Problem in the Context of Evolutionary Psychology: The Challenge of on demand Mind Designs 15:40 – 16:00 COFFEE BREAK 16:00 – 17:10 Ron Chrisley – “I contain multitudes”: Can minds nest?
22 de Outubro, Sexta-feira
09:30 – 11:00 Vincent Müller – Epistemology, AI and Human Minds (Final Title TBC) 11:00 – 11:30 COFFEE BREAK 11:30 – 13:00 J. Adam Carter [online] – “Digital knowledge and the norms of AI delegation (or: leave it all to the machines?)” 13:00 – 14:30 ALMOÇO 14:30 – 15:30 Steven Gouveia – Minds, Persons and the Mind-Uploading Hypothesis 15:30 – 16:00 COFFEE BREAK 16:00 – 17:00 Paul Smart [online] – Minding Society: Social Machines, Predictive Processing, and the Cognitive Incorporation of Humanity 17:00 – 17:30 Robert W. Clowes (chairing) – Closing discussion: The Future(s) of the tMTP
Informações O simpósio será realizado em formato híbrido: presencialmente, no Anfiteatro da FCiências.ID, e online, via Zoom. A participação é gratúita, mas carece de incrição.
(Aula inaugural CES – Universidade de Coimbra / PRESENCIAL)
October 22 2021
Speaker: Sheila Jasanoff (Harvard University)
Since the early twentieth century, philosophers and sociologists of technology have bemoaned the power of science and technology to empty our world of meaning: through devices such as rationalization, standardization, massification, and routine. Humans are seen as subjugated to machineries of production, and deprived of voice and agency, so that innovation suffers and democracy itself is in deficit. I will argue to the contrary that the turn of the twentieth century brought enormous gains in our capacity to reflect on what it means to be citizens of scientific and technological societies. Drawing on concepts such as co-production, constitutionalism, and sociotechnical imaginaries, I will show how this rise in social reflexivity has equipped us to rethink the politics of science and technology. I will use illustrations from work in science and technology studies (STS) on environment, biotechnology, and AI to show how advances in theories of science and technology in society open up new vistas for social creativity and political action.
Sheila Jasanoff is Pforzheimer Professor of Science and Technology Studies at the John F. Kennedy School of Government at Harvard University. She is affiliated with the Department of the History of Science and Harvard Law School. Previously, she was Professor of Science Policy and Law at Cornell University and founding chair of Cornell’s Department of Science and Technology Studies. At Harvard, she founded and directs the Kennedy School’s Program on Science, Technology and Society (STS). In 2002, she founded the Science and Democracy Network, an international community of STS scholars dedicated to improving scholarly understanding of the relationships among science, technology, law, and political power.
Jasanoff has been a pioneer in building the field of Science and Technology studies (STS). Through her many administrative, pedagogical, and editorial roles, she has helped define the field for a generation of younger scholars in STS. Her works on law and science, risk management, the comparative politics of regulation, and science in environmental decisionmaking count as basic texts on those topics
In this talk I will provide an overview of my previous work on the bodily roots of conscious experiences throughout the lifespan. I will then briefly look at alterations of self-awareness in depersonalisation, a condition that makes people feel detached from one’s self, body and the world. I will present some recent findings from our group regarding the relationship between depersonalisation and the bodily self. I will conclude by presenting my ongoing projects and experiments that will test these ideas empirically in humans and artificial agents.
Transmissão em direto via Zoom (password: 553547).
Nesta sexta dia 10 vou apresentar ideias relacionadas a minha pesquisa no 4º CONGRESSO INTERNACIONAL DA SOCIEDADE PORTUGUESA DE FILOSOFIA, promovido pela Universidade do Minho. O evento começa na 5a feira, dia 9. O programa completo está neste link.
Você já se perguntou por que o design daquele site que deveria ser ótimo é tão ruim? Definitivamente, uma má experiência do usuário com um site nem sempre acontece porque a equipe de User Experience/Arquitetura de Informação precisa ser trocada. Veja como o Facebook e a Amazon irritam quando precisamos achar algo como desativar a nossa conta. É tão ruim ou pior do que cancelar a NET.
O que acontece é que a experiência está sendo boa para alguém que não é você, mas a empresa por trás daquele site. Estou falando dos chamados “Dark Patterns“, que são estratégias e maneiras de apresentar o conteúdo e de conduzir o usuário por um website que, em vez de ajudá-lo, o confundem. A experiência é desastrosa, mas o usuário faz o que a companhia quer, e então… bem, a meta está batida.
Quando fiz minha pós em Marketing Digital em 2008, uau, User Experience era realmente sobre deixar o usuário feliz. Era sobre tornar as coisas mas simples para o usuário, deixar a navegação intuitiva, levá-lo ao conteúdo que ele precisa acessar. As coisas mudaram muito na internet nos últimos anos. Quer dizer, não precisa ser assim. Há empresas e empresas. Dark Patterns me lembram as técnicas de “Black Hat SEO”, que eram códigos inseridos nos sites para que chegássemos até eles por meio das buscas; mas, quando chegávamos, os sites não tinham o que esperávamos. Uma frustração, porém isso ajudava a impulsionar os números de visitas e visitantes dos sites.
Hoje, técnicas aplicadas para que os usuários tomem decisões que beneficiam as companhias, em vez de beneficiarem aos usuários, têm uma ajudinha extra: a aprendizagem de máquina. Nossos dados ao infinito, processados por redes profundas com uma capacidade nunca vista antes de aproveitar esses dados para produzir mais dados ainda.
No entanto, a internet não é, ou não deveria ser, uma terra sem lei. A experiência que a gente tem navegando em sites, fazendo buscas etc deveria ser, efetivamente, boa. E, se todas as empresas na internet competem pela sua atenção, algumas deixam suas intenções mais claras, outras preferem te empurrar na direção que elas desejam. Saber o que está acontecendo a nossa volta nos ajuda a cobrar serviços melhores e isso inclui sites que funcionam pelo ponto de vista dos usuários, não somente das empresas. A quem trabalha com internet, bem, acho que vale se questionar: você deixou de ser consumidor para ser designer, arquiteto de informação, programador, empresário, empreendedor? Não. E você gostaria de encontrar Dark Patterns pela sua frente ao tentar fazer coisas que clientes fazem em sites de empresas?
One of the most interesting features of this book, I think, is to lead a discussion regarding the kinds of responsibilities and duties we should or should not leave up to artificial systems. Smith is not interested in making a comparison between humans and machines, as he himself makes clear in the beginning of the book, but to question the ontology that underlies the premises guiding AI in our society.
In doing so, the author offers us a rich, deep perspective of AI through a philosophical lens, encompassing ethical, technical and cognitive issues. If you are interested in questions like the features that make humans human, where we are as a society when it comes to AI, how machine learning may change our lives and what intelligence is, this book offers a great perspective and may help you think these through.
PT
Livro que recomendo para quem se interessa por AI/machine learning sob um olhar filosófico / Book I recommend to those interested in AI/machine learning through a philosophical perspective
Uma das características mais interessantes deste livro, eu acredito, é conduzir uma discussão sobre quais atividades devemos ou não deixar para a IA. Smith não está interessado em fazer uma comparação entre humanos e máquinas, como ele mesmo deixa claro no início do livro, mas em questionar a ontologia por trás das premissas que norteiam a IA em nossa sociedade.
Ao fazer isso, o autor nos oferece uma perspectiva rica e profunda da IA por meio de lentes filosóficas, abrangendo questões éticas, técnicas e cognitivas. Se você estiver interessado em questões como os recursos que tornam os humanos humanos, onde estamos como sociedade quando se trata de IA, como o aprendizado de máquina pode mudar nossas vidas e o que é inteligência, este livro oferece uma perspectiva que pode ajudá-lo a pensar sobre isso.
SMITH, BRIAN C. THE PROMISE OF ARTIFICIAL INTELLIGENCE – RECKONING AND JUDGEMENT, MIT Press, 2019
Precisamos de uma WWW democrática. Uma rede de conexões reais no espaço virtual.
Esta semana, recebi de diversas pessoas o vídeo que alardeia aquilo que na prática todos temos notado: a nossa navegação na Web é completamente rastreada pelo Facebook. Se você acessou um site e viu algo de que gostou mas não se lembra direito qual foi, esqueceu o nome etc, pode usar o histórico do seu navegador para reencontrá-lo ou… pode usar o histórico do Facebook. Vá em Configurações > Sua atividade no Facebook > Atividade fora do Facebook e verá que está tudo lá.
O Facebook está se tornando a própria World Wide Web, que não é mais tão vasta, ampla ou grande no melhor sentido da coisa e, diga-se de passagem, está cada vez mais chata, comercial e robotizada – no sentido literal. O que temos é um território mapeado, em que um chip com nossos logins (na forma de app do Facebook) funciona como uma espécie de arco íris que leva ao tesouro: nossos dados.
O problema nao está só no Facebook. Até porque ele está acompanhado da Amazon, Google, Apple. E alguns podem dar de ombros e dizer que esse rastreamento das lojas e sites que visitamos, em particular, pode nem ser tão preocupante, apenas irritante.
Mas é fato que, pela nossa sanidade, pela longa vida às artes, à filosofia, à política, ao cinema, às reais trocas de ideias, precisamos de uma internet democrática. Uma World Wild Web, isto é, uma Web “selvagem” no bom sentido, ampla de fato, democrática, capaz de se abrir à vastidão da natureza humana, dos nossos desejos e sonhos, ajudando-nos a criar e a fortalecer nossas reais conexões. Para usar esse termo busco como referência o pesquisador Edwin Hutchins, autor de Cognition in the Wild, este livro aqui. A ideia é a de analisar a cognição humana em seu habitat natural, a natureza, a cultura, as relações sociais, em vez de fazer isso apenas em laboratórios/ambientes controlados – o que poderia levar a uma dimensão bem mais fiel dos nossos processos cognitivos.
Penso enquanto escrevo numa Web que reflita as múltiplas realidades que vivemos, que se conecte melhor com o mundo que habitamos e que construimos todos os dias, em vez de apenas tentar construir esse mundo para nós – fazendo-o puramente devotado à venda, um palco em que se discute basicamente o que vale mais e quanto se quer pagar. Um mercado das pulgas em que as pulgas somos nós (isso é pior ainda do que ser as os cacarecos à venda – ou não…). Sim, eu sei que o mundo “real” também o coloca o capital acima de tudo, mas é exatamente por isso que precisamos mudar a Web (e o mundo) antes que o mundo que a Web tenha para refletir seja exatamente esse mundo chato e vazio como ela!
Um exemplo: para um músico “independente” – uma classificação que considero um tanto falha (por vários motivos) mas que apenas quer dizer no senso comum um artista que faz seu próprio percurso sem esperar as grandes gravadoras/o mainstream etc (o que acho louvável) – usar o YouTube para divulgar seu trabalho tornou-se praticamente impossível. Se tem dúvidas, converse com um deles e confira a odisseia que é ter um canal e conseguir alguns míseros seguidores., mesmo que você tenha uma carreira consolidada, muitos fãs, muitos shows no currículo e muitos álbuns lançados. As redes sociais que usamos são mainstream. Elas criam o seu próprio mainstream. O problema é que elas definem as prioridades e descartam o que não é prioridade para elas. Os “grandes” seguem “grandes”, com muitas aspas, e os “pequenos”… os pequenos que lutem.
Esse é só um exemplo. Se você nunca estranhou o alcance ínfimo de uma determinada publicação sua no FB quando esperava muitos likes, é porque provavelmente só posta gatinhos. O FB adora gatinhos. Aliás, aposto que Zucker fez algo de bom, pelo menos, que foi popularizar os gatos e fazer mais pessoas adotá-los, porque agora parece que todos têm gatos. O FB adora gatos porque as pessoas passam HORAS vendo vídeos de gatos.
Voltando à Web democrática: ela era a ideia original de Tim Berners Lee, mas simplesmente não aconteceu. Mas ele não desistiu: Tim tem uma startup chamada Inrupt e está trabalhando por uma nova estrutura de rede, chamada SOLID. A ideia é repensar a maneira como aplicativos armazenam e compartilham dados pessoais. Para isso, em vez de armazenar dados em servidores de uma empresa que se interessa apenas em lucrar a partir deles, os usuários teriam um pequeno servidor exclusivo, localizado no Solid, um servidor grande. O problema dessa história é que ela parece levar ao problema do regresso infinito, isto é, Berners-Lee acabaria por ter os dados de todos armazenados em seu mega servidor com vários mini servidorezinhos; mas ele diz que não, que os dados estariam somente no servidor de cada um. De todo modo, as motivações de Tim me parecem sem dúvida melhores do que as de Zucker e sua turma, que não sabem mais onde colocar seu dinheiro. E continuam querendo faturar mais e mais às custas não apenas da nossa privacidade como do esvaziamento total da graça que a internet um dia teve, quando prometia ser a terra da criatividade que representava uma real alternativa ao caminho até então monótono do broadcasting.
Berners-Lee e o CEO (odeio estas siglas) da empresa dele – que não é ele, mas sim um cara chamado John Bruce – não esperam que o modelo descentralizado que estão tentando materializar desmorone as tech giants num passe de mágica, como bem lembra este artigo aqui da Wired. Até porque Zucker e os amigos não querem largar o osso carnudo dos nossos dados. O que a dupla Berners-Bruce quer é lançar uma alternativa, que possa se popularizar ao menos entre quem está preocupado com tudo isso que estou expondo neste texto e anseie por uma rede mais bacana, mais leve, aberta e criativa. Não sei exatamente como isso vai funcionar, se vai funcionar, mas esse caminho me parece bastante interessante e pretendo acompanhar. Sugiro que façam o mesmo. Até porque o problema não é apenas você gostar de hambúrguer com cheddar, e ficar toda hora aparecendo hambúrguer com cheddar para você nos anúncios na “sua internet”. O problema é que assim você vai viver num mar de hambúrgueres de cheddar com pequenas variações (com ou sem cebola…) em vez de conhecer um mundo que também tem hotdogs, pipocas doces, salsichas alemãs, saladas, pizzas ou seja o que for.
É bom pensar nisso antes que sua pressão arterial saia do controle.
Navegando pela rede, você certamente já se viu diante de anúncios de algo que andou procurando, como se o seu navegador tivesse “adivinhado” o que você queria. Ou já recebeu uma sugestão de filme ou série que a Netflix achou que seria “a sua cara”…
(Bem, nem sempre funciona tão bem…)
… pois os nossos dados têm sido utilizados em sistemas de machine learning para fazer previsões e identificar tendências.
Muito se tem falado sobre as potencialidades do big data para a educação. Para quem não está familiarizado com o termo, trata-se dessas “coleções maciças de dados” (segundo os autores do artigo Tecnologias digitais na educação: a máquina, o humano e os espaços de resistência; clique para ler) que são geradas na medida em que navegamos por sistemas digitais e deixamos os nossos rastros nessas plataformas.
O que isso pode significar quando se trata de educação? A pergunta ainda é uma caixa preta, mas é preciso um esforço para abri-la.
Apesar do oceano de implicações positivas que vêm sendo apontadas para o uso de machine learning e de big data na educação, é preciso ir devagar com esse andor porque o santo é de barro. O que (vem sendo propagado que) o big data promete?
Quando se trata do uso de plataformas de aprendizagem baseadas em machine learning, basicamente o que se destaca é que, tendo mais informação sobre o desempenho e o ritmo individual de cada aluno, se poderá oferecer conteúdos mais apropriados à sua aprendizagem, no tempo e na sequência mais adequados para cada um. Com isso, se alcançaria “melhores” resultados, aproveitando ao máximo as potencialidades de cada aluno, resolvendo problemas e dificuldades que eles eventualmente tenham etc. Parece perfeito – e alinhado ao discurso da tecnologia como panaceia para tudo aquilo que se tem tentado solucionar na educação há tantos anos. Bem, esse, em si, já é um indício de que é preciso olhar para o tema com mais atenção.
Um exemplo, tirado deste livro aqui, intitulado Learning with Big Data – The Future of Education, é o rastreamento do comportamento de alunos em relação a vídeos de palestras numa plataforma online de atividades: é possível saber quando eles assistem aos vídeos, quando pausam, se aceleram para ver mais rápido, se os abandonam antes de terminar de assistir. Com base na identificação desses padrões, professores poderiam ajustar lições, decidir reforçar conceitos que aparentemente os alunos não entenderam bem ou mudar a maneira de explicar determinado assunto, por exemplo.
Mas, isso quer dizer que esteja ocorrendo um processo de aprendizagem melhor, realmente? Antes, aliás, isso significa que está ocorrendo, de fato, aprendizagem? O discurso costuma ser de que sim, mas… essa é uma conclusão que não se deve apressar.
Um artigo do New York Times – ‘The Machines Are Learning, and So Are the Students’ (“As Maquinas estão aprendendo, e também os alunos”), de Craig Smith, publicado em dezembro do ano passado – já no título traz um pressuposto enviesado para o uso de inteligência artificial na forma de machine learning: a ideia de que as máquinas aprendem. Mais audaciosamente, indica que os alunos estão aprendendo, também, graças a essas máquinas e sua suposta sagacidade. Smith diz:
Slowly, algorithms are making their way into classrooms, taking over repetitive
tasks like grading, optimizing coursework to fit individual student
needs and revolutionizing the preparation for College Board exams like
the SAT. A plethora of online courses and tutorials also have freed teachers
from lecturing and allowed them to spend class time working on problem
solving with students instead.
Aqui, já vemos uma outra face do discurso: para além de individualizar o ensino, o uso de sistemas baseados em algoritmos poderia poupar os professores de tarefas como avaliar seus alunos e até de dar aulas expositivas (hum… alguém perguntou aos professores se eles querem parar de dar suas aulas?), podendo usar o tempo para trabalhar com seu alunos em “resolução de problemas”. Perceba que o discurso é sempre de usar melhor o tempo, aprender melhor, mas, não se sabe o que esse “melhor” de fato significa. Com frequência, a ideia adjacente é a de que o professor pode ser substituído, ao menos em certas atividades (tão diferentes quanto dar aulas expositivas e corrigir avaliações…).
Em outro trecho, que reproduzo a seguir, o jornalista aponta pesquisas (sem especificar quais) que teriam mostrado a superioridade de tutores na forma de inteligência artificial em relação a tutores humanos. Isso se daria porque “o computador é mais paciente” que o professor, além de mais insightful – o que poderia significar ter ideias melhores ou ser mais criativo (?)
Studies show that these systems can raise student performance well
beyond the level of conventional classes and even beyond the level achieved by
students who receive instruction from human tutors. A.I. tutors
perform better, in part, because a computer is more patient and often more
insightful.
Será?
Num cenário em que predomina o discurso sobre os efeitos positivos da inteligência artificial na educação, esse artigo é apenas um exemplo. São muitos os que trazem algo nessa mesma linha.
Somente com estas breves referências que apontei até aqui, já abrimos uma infinidade de questões a serem postas em xeque tanto sobre o uso efetivo da IA na educação na forma de [machine learning + big data] quanto sobre o discurso. Predomina uma argumentação acrítica e pasteurizada, que costuma assinalar os ganhos sem pesar as possíveis consequências advindas do uso massivo de dados.
Não se procura saber, nem mesmo, o que são esses dados. Isto é, o que quer dizer, efetivamente, o tempo que um estudante levou para fazer uma lição? Quando esse tempo é fornecido a partir do rastreamento da atividade desse aluno, ele não parece dizer muita coisa. O que realmente aconteceu com o aluno durante o tempo em que ele estava logado? Não somos meros logins, somos pessoas, num determinado espaço, em determinado momento. Talvez não possamos ser representados somente por números.
De volta para o futuro
Mesmo que se pudesse prever todas as adversidades envolvidas em dada situação cujo objetivo é o ensino e a aprendizagem, aí já está um x da questão: a previsão. Especialistas com um olhar crítico à IA na educação vêm indicando que isso pode gerar um passado cristalizado e prender os alunos a um futuro rígido, imutável.
Uma vez que o machine learning trabalha a partir de tais previsões, já que se utiliza de dados gerados pelos estudantes para que, com esses dados, possa identificar tendências, há o risco de os estudantes se tornarem eternamente atados ao seu passado – carregando uma espécie de mochila pesada de históricos escolares detalhados a seu respeito que nunca são esquecidos e podem permanecer acessíveis por mais tempo do que seria desejável.
Seu futuro lhes faria vítimas das previsões justamente baseadas em dados estáticos, os quais podem não corresponder mais à sua realidade. Somos, afinal, seres em constante transformação e evolução. Envolvidas nisso há diversas implicações, especialmente, para a privacidade dos alunos – já que os dados podem ficar acessíveis para fins questionáveis, o que pode prejudicar sua vida profissional e pessoal.
Neutralidade tecnológica?
De onde vêm os dados gerados a partir da atividade dos alunos em uma plataforma baseada em machine learning? Dados não surgem por acaso, não são espontâneos e nem existem por si só. Eles surgem nas interações entre alunos e máquinas, e essas interações são limitadas pela maneira como o sistema é construído, pelo que se espera dele, pelo que é injetado em seus algoritmos. Isto é, dados emergem a partir de decisões tomadas no desenvolvimento dos algoritmos para os sistemas de IA utilizados nas plataformas.
Nesse desenvolvimento, priorizam-se determinados aspectos em detrimento de outros.
Fatalmente, também por sua vez, os resultados obtidos trarão consigo a priorização de certo aspectos e não de outros. Um problema relevante, por trás disso, é que frequentemente somos avaliados por fórmulas secretas que não compreendemos, como ressalta a matemática Cathy O’Neil. Se o que se avalia não fica claro, é certo que, como O’Neil explica: “Para construir um algoritmo, são necessárias duas coisas: dados – o que aconteceu no passado – e uma definição de sucesso, aquilo que estamos procurando e pelo que estamos geralmente esperando”.
A definição de sucesso adotada estará instilada nos algoritmos. A suposta neutralidade tecnológica não existe...
Vieses
Pode-se facilmente compreender como pode haver (e há, muitos) vieses em algoritmos quando se trata do preconceito racial em alguns sistemas de reconhecimento facial, por exemplo. Esses são casos contundentes e que têm adquirido notoriedade, tornando-se o centro de preocupações éticas concernentes ao campo.
A IBM afirmou que abandonaria pesquisa em reconhecimento facial por conta das implicações éticas e da falta de regulamentação – Leia
Na educação, mencionei questões sobre a privacidade dos dados dos estudantes e ao fato de os sistemas não serem claros quanto às variáveis relacionadas ao que é avaliado. Mas, ainda não falei dos professores. Há também iniciativas que procuram avaliá-los a partir de big data, com consequências que merecem (muita!) atenção.
Em sua palestra no TED, O’Neil cita a diretora de um colégio no Brooklyn que, em 2011, disse a ela que sua escola estava avaliando os professores a partir de um algoritmo complexo – e secreto. A diretora relata que tentou conseguir a fórmula para entender os critérios envolvidos naquela avaliação, mas o que ouviu da secretaria de educação foi que não adiantava lhe explicar porque ela não entenderia, já que se tratava de matemática.
Conclusão (conheça a história no TED): professores daquela escola foram demitidos por causa da tal fórmula secreta, uma caixa preta que a diretora tentou abrir, sem sucesso.
Como O’Neil destaca, o poder de destruição de um algoritmo projetado de maneira equivocada é imenso, e essa destruição pode se arrastar por bastante tempo. Mas, quando o assunto é uma modelagem envolvendo algoritmos, o pior de tudo é a falta de transparência. Por isso ela cunhou o termo “armas de destruição matemática”.
Não somos somente pontinhos em um grande mapa de dados… (Imagem: Maria Bobrova @ Unsplash)
O big data na educação é uma caixa preta devido à dificuldade, em geral, de entendimento do que a inteligência artificial, na forma do machine learning, significa ou pode significar para processos educacionais. E se torna ainda mais obscura quando, sem que se conheça os critérios utilizados, alunos e educadores sejam submetidos a avaliações e análises frequentemente injustas; e o pior, sem poder contestá-las.
O’Neil dá vários exemplos de como o uso indevido de dados tem prejudicado pessoas em variadas situações. Para entender isso melhor, é preciso olhar para a noção de modelo; o que é um modelo e por que ele pode se tornar uma arma de destruição matemática? Explicarei isso em outro post.
Agradeço à Giselle Ferreira, professora da PUC-Rio que está ministrando uma disciplina sobre big data e educação este semestre, pelos ricos debates que tanto colaboraram com insights para que este(s) post(s) fossem escritos. Leia o blog dela, no qual é possível obter uma perspectiva crítica sobre as tecnologias educacionais: https://visoesperifericas.blog/